
MP2I – Lycée Carnot – 2025/2026 Informatique – DS2 1/3

Devoir en temps limité n°2 – 2h
Calculatrices autorisées

On veillera à présenter très clairement sa copie : il faut rédiger les réponses et encadrer les résultats. Pour le code, il
doit être indenté, on ne commence pas une fonction en bas de page et on utilise de la couleur pour les commentaires.
Le code doit être commenté dès qu’il dépasse les 5 lignes.
Il est possible (et recommandé) d’utiliser des fonctions auxiliaires en Ocaml. Dans ce devoir il est interdit d’uti-
liser les aspects impératifs de Ocaml y compris : le mot-clé mutable, les références, les tableaux et les
boucles

1 Questions de cours
1. Rappeler la définition de 𝑢𝑛 = Θ(𝑣𝑛) (𝑛 → +∞) pour (𝑢𝑛)𝑛∈ℕ et (𝑣𝑛)𝑛∈ℕ deux suites.
2. Voici le nombre d’opérations élémentaires réalisés par 4 fonctions. Déterminer leur complexité asymptotique

et classez les fonctions par ordre croissant de rapidité.
■ 𝑓1 : 4𝑛 + 1
■ 𝑓2 : 3𝑛3 + 2𝑛2

■ 𝑓3 : 2𝑛⌊log10(𝑛)⌋ + 𝑛

■ 𝑓4 : 3𝑛⌊log2(𝑛)⌋
3. Dans le fichier de code suivant, determiner quelles variables sont stockées dans le segment données de la

mémoire, dans le segment pile et dans le segment tas. (À priori il y a 7 variables)
#include <stdlib.h>
#include <stdio.h>

int x=0;

int f(int n){
int* tab = malloc(n*sizeof(int));
tab[0] = 1;
tab[1] = 1;
for(int i=2;i<n;i+=1){
tab[i] = tab[i-1] +tab[i-2];

}
int res = tab[n-1];
free(tab)
return res;

}

int main(){
int t[4] = {1,5,10,14};

for(int j=0; j<4;j+=1){
f(t[j]);

}
}

4. Qu’est ce qu’un invariant de boucle ? À quoi ça sert ?
5. Traduire en binaire sur 32 bits le nombre flottant 37, 75. La représentation obtenue est censée être exacte.

2 Ocaml
6. Déterminer le type des fonctions Ocaml suivantes :

let f x y = x + y;;
let g a b = if a=3 then b else 1.5;;
let h (x,y,z) = if x=y then z+1 else z;;
let i a b c = let (d,e) = a in

if b then c
else d;;

7. Définir en Ocaml la fonction f:float->float définie par 𝑓 (𝑥) = 𝑒𝑥 + 𝑥2 − 3
2

.



MP2I – Lycée Carnot – 2025/2026 Informatique – DS2 2/3

8. Définir une fonction Ocaml récursive qui calcule
𝑛∑︁
𝑖=0

3𝑖6 pour 𝑛 donné en entrée. La signature pourra être

somme6 : int -> int OU somme6 : int -> int -> int.
9. Écrire une fonction récursive sum : int list -> int qui calcule la somme des éléments d’une liste d’entiers.

10. Écrire une fonction nboccurences : 'a list -> 'a -> int qui prend en entrée une liste 𝑙 et un élément 𝑥 et
renvoie le nombre de fois où 𝑥 apparait dans 𝑙.
Par exemple nboccurences [1;2;3;1;5;1;7;1] 1;; renvoie 4.

11. Écrire une fonction del_list : 'a list -> int -> 'a list qui prend en entrée une liste 𝑙 et un entier 𝑛 et
renvoie une liste 𝑙′ qui est 𝑙 où on a retiré l’élément d’indice 𝑛.
Par exemple del_list [1;2;3;4] 1;; renvoie [1;3;4] car on supprime le 2, situé à l’indice 1. Dans cette ques-
tion on considère que les indices commencent à 0.

3 Preuve de programme

On étudie la fonction C suivante :
int mystere(int n){

assert(n>0);
int x = 0;
int y = n;
while (y!=0){
x += 3;
y -= 1;

}
return x;

}

12. Que renvoie cette fonction? Écrire sa spécification.
13. Montrer la terminaison de la fonction.
14. Trouver un invariant et montrer la correction de la fonction.

4 Calcul de complexité

On considère les 4 programmes suivants :

void f1(int* tab, int n){
int m = 3*4;
for(int i=0; i<n;i+=1){
tab[i] *= m;

}
}

int f2(int n){
int res = 1;
for(int i=0; i<n; i+=1){
for(int j=0; j<i ; j+=1){
res *= j;

}
}
return res;

}

int f3(int n){
int res = 1;
for(int i=0; i<n; i+=1){
res *= i;
for(int j=0; j<i ; j+=1){
res *= j;

}
}
return res;

}

int f4(int n){
int res = 1;
for(int i=0; i<n; i+=1){
for(int j=i+3; j<=i+6 ; j+=1){
res *= 3;

}
}
return res;

}

15. Compter exactement combien de multiplications sont réalisées par chaque fonction.
16. En déduire la complexité asymptotique des quatres fonctions.

On considère la fonction Ocaml suivante qui calcule 2𝑛 de manière un peu bête :



MP2I – Lycée Carnot – 2025/2026 Informatique – DS2 3/3

let rec puissance_2_bete n =
if n = 0 then 1
else if n mod 2 = 0 then (puissance_2_bete (n/2)) * (puissance_2_bete (n/2))
else 2 * (puissance_2_bete (n/2)) * (puissance_2_bete (n/2));;

On note 𝐶(𝑛) la complexité de la fonction sur l’entrée 𝑛. On rappelle qu’en Ocaml, le calcul n/2 donne en réalité
⌊𝑛

2
⌋.

17. Déterminer la formule de récurrence de la suite (𝐶(𝑛))𝑛∈ℕ.
18. Pour 𝑛 = 2𝑘, trouver la forme générale de la suite. Il n’est pas nécessaire de généraliser à 𝑛 qui n’est pas une

puissance de 2.
19. Montrer la terminaison de cette fonction.
20. Montrer la correction de cette fonction. On remarquera qu’elle est récursive.

5 Suite de Syracuse

La suite de Syracuse est définie par récurrence par un 𝑢0 ∈ ℕ et

∀𝑛 ∈ ℕ, 𝑢𝑛+1 =

{
𝑢𝑛/2 si 𝑢𝑛 est pair

3 ∗ 𝑢𝑛 + 1 si 𝑢𝑛 est impair
Par exemple, avec 𝑢0 = 13, on obtient la suite 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, . . .
Après avoir atteint le nombre 1, la suite de valeurs 1, 4, 2 se répète indéfiniment en un cycle de longueur 3 ap-
pelé cycle trivial. La conjecture de Collatz est l’hypothèse selon laquelle la suite de Syracuse de n’importe quel
entier 𝑢0 strictement positif atteint toujours 1. Bien qu’elle ait été vérifiée pour les 5,7 premiers milliards de mil-
liards d’entiers et en dépit de la simplicité de son énoncé, cette conjecture défie depuis de nombreuses années les
mathématiciens.
Dans cette exercice, on supposera que la conjecture est vraie et que les fonctions qu’on écrit termine-
ront toujours.

21. Écrire une fonction suivant : int -> int telle que suivant u_n calcule le terme 𝑢𝑛+1 en fonction du terme 𝑢𝑛 =

u_n.
22. En déduire une fonction syracuse : int -> int -> int qui prend en entrée 𝑢0 et 𝑛 et renvoie le terme 𝑢𝑛 de

la suite de Syracuse de premier terme 𝑢0.

On appelle orbite de 𝑢0 la liste des termes de la suite de Syracuse de 𝑢0 jusqu’à ce que l’on tombe sur 1 (inclus).
L’orbite de 13 est donc 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.
Plusieurs caractéristiques d’une orbite peuvent être intéressantes :

■ son temps de vol correspond au nombre total d’entiers visités sur l’orbite ;
■ son altitude est donnée par le plus grand entier visité sur l’orbite ;
■ son temps de vol en altitude correspond au nombre d’étapes avant de passer strictement en-dessous du

nombre de départ ;
■ son temps de vol avant la chute correspond au nombre d’étapes minimum après lequel on ne repasse plus

au-dessus de la valeur de départ.
Par exemple pour l’orbite du nombre 13, l’altitude vaut 40 (maximum de la suite), le temps de vol vaut 10, le temps
de vol en altitude vaut 3 (on passe à 10 < 13 lors de la 3e étape) et le temps de vol avant la chute vaut 6 (on passe à
8 < 13 lors de la 6e itération et ensuit on ne repasse jamais au-dessus).

23. Écrire une fonction temps_de_vol : int -> int qui prend en entrée 𝑢0 et renvoie le temps de vol correspondant
à l’orbite de 𝑢0.

24. Écrire une fonction altitude : int -> int qui prend en entrée 𝑢0 et renvoie l’altitude de l’orbite de 𝑢0.
25. Écrire une fonction temps_en_altitude : int -> int qui prend en entrée 𝑢0 et renvoie le temps de vol en alti-

tude correspondant à l’orbite de 𝑢0 avec 𝑢0 > 1.
26. Écrire une fonction temps_avant_chute u_0 qui prend en entrée 𝑢0 et renvoie le temps de vol avant la chute

pour l’orbite de 𝑢0 avec 𝑢0 > 1.


	Questions de cours
	Ocaml
	Preuve de programme
	Calcul de complexité
	Suite de Syracuse

