MP2I - Lycée Carnot - 2025/2026 Informatique - DS2 1

Devoir en temps limité n°2 - 2h

Calculatrices autorisées

On veillera a présenter tres clairement sa copie : il faut rédiger les réponses et encadrer les résultats. Pour le code, il
doit étre indenté, on ne commence pas une fonction en bas de page et on utilise de la couleur pour les commentaires.

Le code doit étre commenté des qu’il dépasse les 5 lignes.

11 est possible (et recommandé) d’utiliser des fonctions auxiliaires en Ocaml. Dans ce devoir il est interdit d’uti-
liser les aspects impératifs de Ocaml y compris : le mot-clé mutable, les références, les tableaux et les
boucles

1 Questions de cours

1. Rappeler la définition de u, = O(v,)(n — +0) pour (u,)nen €t (U,)nen deux suites.

2. Voici le nombre d’opérations élémentaires réalisés par 4 fonctions. Déterminer leur complexité asymptotique
et classez les fonctions par ordre croissant de rapidité.

mfi:4n+1

m £, :3n% + 202

® f3:2n[logy(n)] +n
m fy:3"[logy(n)]

3. Dans le fichier de code suivant, determiner quelles variables sont stockées dans le segment données de la
mémoire, dans le segment pile et dans le segment tas. (A priori il y a 7 variables)

#include <stdlib.h>
#include <stdio.h>

int x=0;

int f(int n){
intx tab
tab[0] =
tab[1l] =
for(int i=2;i<n;i+=1){

tab[i] = tab[i-1] +tab[i-2];
}
int res = tab[n-1];
free(tab)
return res;

}

)
= malloc(nxsizeof(int));
1
1

’
’

int main(){
int t[4] = {1,5,10,14};

for(int j=0; j<4;j+=1){
f(tlil);
}
}

4. Quest ce qu'un invariant de boucle? A quoi ca sert?

5. Traduire en binaire sur 32 bits le nombre flottant 37, 75. La représentation obtenue est censée étre exacte.

2 QOcaml

6. Déterminer le type des fonctions Ocaml suivantes :

let f xy =x+y;;
let g a b = if a=3 then b else 1.5;;
let h (x,y,z) = if x=y then z+1 else z;;
let i abc=1let (d,e) = a in
if b then c
else d;;

3
7. Définir en Ocaml la fonction f:float->float définie par f(x) = e* + x2 — 3

MP2I - Lycée Carnot - 2025/2026 Informatique - DS2 2

n
8. Définir une fonction Ocaml récursive qui calcule Z 3i% pour n donné en entrée. La signature pourra étre
i=0
somme6 : int -> int OU somme6 : int -> int -> int.
9. Ecrire une fonction récursive sum : int list -> int qui calcule la somme des éléments d’une liste d’entiers.
10. Ecrire une fonction nboccurences : 'a list -> 'a -> int qui prend en entrée une liste / et un élément x et
renvoie le nombre de fois o1 x apparait dans /.
Par exemple nboccurences [1;2;3;1;5;1;7;1] 1;; renvoie 4.
11. Ecrire une fonction del_list : 'a list -> int -> 'a list qui prend en entrée une liste [et un entier n et
renvoie une liste /' qui est [ou1 on a retiré ’élément d’indice n.
Par exemple del_list [1;2;3;4] 1;; renvoie [1;3;4] car on supprime le 2, situé a I'indice 1. Dans cette ques-
tion on considere que les indices commencent a 0.

3 Preuve de programme

On étudie la fonction C suivante :

int mystere(int n){

assert(n>0);
int x = 0;
int y = n;
while (y!=0){
X += 3;
y -=1;
}
return x;

12. Que renvoie cette fonction? Ecrire sa spécification.
13. Montrer la terminaison de la fonction.

14. Trouver un invariant et montrer la correction de la fonction.

4 Calcul de complexité

On consideére les 4 programmes suivants :

int f3(int n){
int res = 1;

void fl(intx tab, int n){ for(int i=0; i<n; i+=1){
int m = 3x4; res x= i;
for(int i=0; i<n;i+=1){ for(int j=0; j<i ; j+=1){
tab[i] *= m; res *= j;
} }
} h
return res;
int f2(int n){ }
int res = 1;
for(int i=0; i<n; i+=1){ int f4(int n){
for(int j=0; j<i ; j+=1){ int res = 1;
res *= j; for(int i=0; i<n; i+=1){
} for(int j=i+3; j<=i+6 ; j+=1){
} res %= 3;
return res; }
} }
return res;
}

15. Compter exactement combien de multiplications sont réalisées par chaque fonction.

16. En déduire la complexité asymptotique des quatres fonctions.

On considere la fonction Ocaml suivante qui calcule 2" de maniére un peu béte :

MP2I - Lycée Carnot - 2025/2026 Informatique - DS2 3

let rec puissance_2_bete n =
if n = 0 then 1
else if n mod 2 = 0 then (puissance_2_bete (n/2)) * (puissance_2_bete (n/2))
else 2 x (puissance_2 bete (n/2)) * (puissance_2_bete (n/2));;

On note C(n) la complexité de la fonction sur 'entrée n. On rappelle qu’en Ocaml, le calcul n/2 donne en réalité
n
2],

17. Déterminer la formule de récurrence de la suite (C(n)),cn.

18. Pour n = 2*, trouver la forme générale de la suite. Il n’est pas nécessaire de généraliser & n qui nest pas une
puissance de 2.

19. Montrer la terminaison de cette fonction.

20. Montrer la correction de cette fonction. On remarquera qu’elle est récursive.

5 Suite de Syracuse

La suite de Syracuse est définie par récurrence par un uy € N et

u,/2 siu, estpair
YneN, up= " R
3*xu,+1 siu, estimpair

Par exemple, avec ug = 13, on obtient la suite 13, 40, 20, 10, 5, 16, 8,4,2,1,4,2,1,4,2,1,4,2, ...

Apres avoir atteint le nombre 1, la suite de valeurs 1, 4, 2 se répéte indéfiniment en un cycle de longueur 3 ap-
pelé cycle trivial. La conjecture de Collatz est I’hypothése selon laquelle la suite de Syracuse de n’importe quel
entier u(strictement positif atteint toujours 1. Bien qu’elle ait été vérifiée pour les 5,7 premiers milliards de mil-
liards d’entiers et en dépit de la simplicité de son énoncé, cette conjecture défie depuis de nombreuses années les
mathématiciens.

Dans cette exercice, on supposera que la conjecture est vraie et que les fonctions qu’on écrit termine-
ront toujours.

21. Ecrire une fonction suivant : int -> int telle que suivant u_n calcule le terme u,.; en fonction du terme u, =
u_n.

22. En déduire une fonction syracuse : int -> int -> int qui prend en entrée ug et n et renvoie le terme u,, de
la suite de Syracuse de premier terme .

On appelle orbite de ug la liste des termes de la suite de Syracuse de u(jusqu’a ce que 'on tombe sur 1 (inclus).
L'orbite de 13 est donc 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.
Plusieurs caractéristiques d’une orbite peuvent étre intéressantes :

m son temps de vol correspond au nombre total d’entiers visités sur 'orbite;

m son altitude est donnée par le plus grand entier visité sur l'orbite;

m son temps de vol en altitude correspond au nombre d’étapes avant de passer strictement en-dessous du
nombre de départ;

m son temps de vol avant la chute correspond au nombre d’étapes minimum apres lequel on ne repasse plus
au-dessus de la valeur de départ.

Par exemple pour l'orbite du nombre 13, 'altitude vaut 40 (maximum de la suite), le temps de vol vaut 10, le temps
de vol en altitude vaut 3 (on passe a 10 < 13 lors de la 3° étape) et le temps de vol avant la chute vaut 6 (on passe a
8 < 13 lors de la 6° itération et ensuit on ne repasse jamais au-dessus).

23. Ecrire une fonction temps_de_vol : int -> int qui prend en entrée ug et renvoie le temps de vol correspondant
a lorbite de uy.
24. Ecrire une fonction altitude : int -> int qui prend en entrée u et renvoie I'altitude de Torbite de uy.

25. Ecrire une fonction temps_en_altitude : int -> int qui prend en entrée u et renvoie le temps de vol en alti-
tude correspondant a l'orbite de uy avec ug > 1.

26. Ecrire une fonction temps_avant_chute u_0 qui prend en entrée ug et renvoie le temps de vol avant la chute
pour l'orbite de ug avec ug > 1.

	Questions de cours
	Ocaml
	Preuve de programme
	Calcul de complexité
	Suite de Syracuse

